

Deliverables

Deliverable Number D24.4

Deliverable Title Software packages for the selected experiment use cases ready to
install and run

Lead Beneficiary PSI

Type Other

Dissemination Level Confidential, only for members of the consortium (including the
Commission Services)

Due date of delivery Month 18

Ref. Ares(2018)5540437 - 29/10/2018

1.Introduction .. 3

2. Selected Data analysis application .. 4

3. Packaging and deployment strategies ... 5

Software deployment .. 5

Standard Packages... 5

Pros .. 5

Cons ... 6

CVMFS ... 6

Pros .. 6

Cons ... 6

Container ... 7

Pros .. 7

Cons ... 7

Jupyter Notebooks .. 8

Deployment in cloud environments like EOSC .. 8

Deployment close to the instrument .. 8

Summarized ... 8

4. Provisioning packages ... 11

5. Next steps .. 13

Premise

The present deliverable describes the packaging and deployment strategies for the five scientific data

analysis frameworks selected in and described in deliverable D24.3.

Description of Work

WP24: Demonstrator of a Photon Science Analysis Service

1.Introduction

The present document presents a comparison of different software packaging strategies, their suitability

in different compute environments and intrinsic advantages and disadvantages. We aim to deploy

analysis frameworks in distributed compute environment like the EOSC-Hub. The focus is hence clearly

on provisioning of software in Linux environment. Some of the packages might possibly be used on

different platforms via containerization or virtualization, or are natively supporting these platforms. We

will however not provide, test or support packages of the selected frameworks other than for Linux

platforms. This might appear inconvenient for some of the users, provides however additional incentives

to use scalable cloud hosted service rather than (poorly maintained) local installations on personal

devices.

Regardless of the particular scientific framework the goal has been to produce suitably packaged

application which

 Can be deployed and used in almost arbitrary environments

 Have a clear description of the build process suitable for automated deployment

 Can save efforts at individual facilities and/or individual users in need of local installations

 Provide a very user friendly access to applications

Deployment of complex data analysis frameworks and tool-chains is a common task at research facilities

and frequently a major hurdle for scientists, hampering rapid data analysis and publications. Simple

assembly of integrated and deployable applications reduces the research institutes (RI) efforts as well as

it accelerates the scientific process.

The selected use case applications have been implemented as deployable packages, as preconfigured

virtual machines or as containers. Virtual machines or containers provide encapsulated user

environments, which can be archived together with the experimental data, thereby capturing valuable

provenance data and strongly supporting reproducibility of the original experiment and data analysis

workflows.

2. Selected Data analysis application

We had selected five most suitable scientific data analysis framework covering very different scientific

areas and workflows. Each of the use cases also poses different challenges for deployment, coming with

different licenses and compute models. The frameworks have been described in detail in deliverable

D2.4. The following table provides a quick overview of the selected use cases:

 CrystFEL Ptycho Shelves Savu pyFAI PyMca

Site DESY PSI Diamond ESRF ESRF

License GPL See 1 GPL/Apache MIT MIT

Licenses of
Dependencies2

Standalone Matlab>R2017b
cuda, hdf5,
gcc>6.2

MPI, cuda,
fftw

Hdf5, silx,
Fabio, fftw,
PyQt

Fisx, PyQt

Available
Recipes

rpm, docker,
singularity,
cvmfs

zip, docker,
singularity

docker,
singularity

deb, rpm deb, rpm,
docker,
singularity

Original
deployments

Source Local at PSI Source Source,
Conda, pip

Source, pip,
conda

Availabe
Repositories

Local git Local Web Github Github, conda,
debian

Github,
conda,
debian

Software
Catalogue3

yes ? ? yes yes

For example pyFAI is providing recipes for building debian packages, is readily available from conda and

debian repositories, and as sources from github. Dependencies listed are only those not always available

from standard repositories.

1
 https://www.psi.ch/sls/csaxs/software

2
 Licenses of products the particular use depends on. Without these products/licenses the use case can not be

executed.
3
 https://software.pan-data.eu/

3. Packaging and deployment strategies

Software deployment
Software deployment is a task common to all facilities, and equally a task of users’ daily workflow. The

individual software component is usually not very difficult to prepare for on-site deployment, though

some applications are rather complex and embedded in a complex environment of heterogeneous

dependencies. The task is multiplied by the number of software components, operating systems to

support, and infrastructures to serve. The total effort spent in software deployment is not marginal and

the result often far from being satisfying.

There are meanwhile several ways of preparing and deploying software in large-scale albeit

heterogeneous infrastructures. Each has its own benefits and disadvantages. We are hence looking for

ways to minimize efforts for both facilities and user communities while maximizing synergies.

The most scalable software deployment tools for Linux based operating systems are briefly outlined

below.

Standard Packages
The most common way (at least for widely used applications) to deploy software is the encapsulation

into standard packages (deb, rpm, dmg, and so on). Packages are usually signed, deposited in standard

repositories and can readily be installed on any system with an internet connection. The repositories can

easily be federated. Package manager usually allow harvesting packages from an arbitrary number of

repositories while prioritizing some repositories (e.g. in-house) over others.

Pros

 Most importantly well maintained packages will guarantee full functionality at run-time.

 Dependencies and conflicts are tracked, so that a purely package based system tend to be highly

self-contained.

 The repositories contain all meta-information like licenses which makes it straightforward to

obtain a full software catalogue of a running system.

 Packages are usually signed allowing tracking the origin of a package.

 Packaging is done with simple to very complex build-instructions. In most cases updates to

newer versions are very simple to realize.

 Deployment and mass-deployment in arbitrary environments is un-problematic in particular with

management systems like puppet/foreman.

 Turn-over time to deploy packages and updates is short.

 Package size are small (in most cases)

 Efforts to build and deploy applications are moderate

 It’s simple to combine an arbitrary number of package sources

 Anyone with a Linux system at home can re-use the packages (if open source)

 Packages can be used to deploy the application in docker or singularity

Cons

 Packages are OS dependent, e.g. a package for Debian systems cannot so easily be transformed

into a package for RedHat systems, without loss of some functionality and consistency.

Occasionally the dependency is at the level of minor releases, so that applications built for

RedHat 7.3 won’t run on RedHat 7.4 (i.e. changes in the crypto/ssl environment).

 Application packages in in-house repositories are fully dependent on the base-system

environment. Updates of the base-system can break an application, or lead to conflicts between

packages.

 Federating various independent repositories can easily lead to an inconsistent system. In

particular the dependencies need to be verified and updated regularly.

 Even though packages can be installed in a user environment, the install process and execution

of post- and pre-installation-instructions are performed with full admin rights. Any package

coming from a foreign repository needs to be carefully validated.

 There are no good mechanisms to control access to software under special license conditions

(e.g. commercial applications like Matlab; non-redistributable software like XDS; software

requiring a personalized license agreement like orca). In essence one would need to setup

several repositories for each class of non-open applications and control access to repositories.

Access to a repository also allows mirroring the entire repository which makes it practically

impossible to prevent unwarranted re-distribution.

CVMFS
The CernVM File System (CVMFS) is designed as a scalable, reliable and low-maintenance software

distribution service. The main focus is clearly the distribution of open source software. The filesystem

has smart mechanisms to minimize the size of the repository, to make distribution of files fast and

scalable across an essentially unlimited number of clients. CVMFS is implemented as a POSIX-compliant

read-only filesystem in user space, and it hence entirely un-intrusive.

Pros

 Single point of deployment

 Easy mechanisms for federation

 Openly accessible. Anyone can mount cvmfs, so offers scalable deployment for users as well as

facilities

 cvmfs comes with smart deduplication mechanisms reducing the

 cvfms supports caching to leverage so load on servers, and reduce the network traffic

 It’s entirely non-intrusive

 Uploads and updates are performed by cvmfs admins making the deployment traceable.

Cons

 cvmfs hosted applications need to be done per operating system (like for regular packages), to

satisfy basic dependencies (e.g. glibc).

 cvmfs caches are only efficient when applications are used multiple time

 caches are limiting the use of very large binary applications (e.g. container)

 setup relies on environment-scriplets. The environments can easily interfere with base-system

operation (e.g. different python-version). This is not a problem for DaaS installations, but can

become difficult to support in local or user environments.

 there is no dependency tracking (unless explicitly embedded into environment-scriplets)

 the execution of environment scriptlets has the side-effect of reducing dramatically the
performance of the system when it comes to launching programs (due to the evalution of
complicated $PATH, $LD_LIBRARY_PATH, ...) which are accessed remotely (and not cached).

 It’s perfect for open source software deployment. Deployment of commercial software, or any

non-re-distributable software is not impossible, but cumbersome and not actually the scope of

cvmfs.

Containers
There are meanwhile several containerization systems available (e.g. docker, shifter, singularity, lxc,

openvz), which all aim to facilitate software deployment in heterogeneous and/or distributed

environments. Shifter for example is tailored for HPC environments; docker is more focusing on scalable

service deployment whereas singularity is oriented towards a pure userspace implementation.

From the perspective of software deployment differences between the different container systems are

comparably small: one needs a recipe to build container, a registry to deploy the images and a bit of

system installation (daemon) to instantiate the service. We will hence focus on docker and singularity as

the most widely used systems at the user facilities.

Pros

 Self-contained environment.

 Easy to deploy in arbitrary distributed environments

 Highly scalable

 Supports reproducibility and provenance. Storing and publishing a container will make the

application and the results highly reproducible.

 OS agnostic (docker). A docker container should run on pretty much any (recent enough)

operating system. Singularity relies more on the host environment and might be less portable.

 Very effective caching and layering mechanisms

Cons

 Encapsulation is great for service deployment. At the instruments the standard applications are

very often augmented by custom add-ons. Importing the add-ons into the container might break

encapsulation and OS agnostics.

 Caching and layering are only effective when containers share a common base. Otherwise

container might become rather heavy-weight. Storing container in cvmfs circumvents the

deduplication mechanism strongly increasing storage and traffic requirements.

 User namespaces in docker might pose problems when importing filesystems and raise security

concerns.

 Authentication inside a container (e.g. for data access) can easily be hijacked by admins on the

host system. Requires complete trust of the service provider by the user.

Jupyter Notebooks
A Jupyter Notebook does - strictly speaking - not provide a software deployment mechanism. It allows

however to document the data analysis procedure in a step-by-step manner, to embed derived data, and

to create snapshots of the current or final state of the procedure. As such notebooks provide an

interface to DaaS Services and at the same time can become integral components of the software

deployment. The typical JupyterHub would instantiate a notebook by launching a docker container with

the requested kernels and software environment. The docker container serving the notebook would

naturally need to fulfil the requirements (dependencies) of the notebook application. The most

consistent way would then to deploy the requirements as regular packages (rpm, deb) inside the docker

container, but cvmfs could equally serve the purpose – as long as the applications and dependencies are

re-distributable. Providing data analysis as a service via notebooks a frontend will hence at least strongly

favour pre-packaging of the applications and dependencies.

Deployment in cloud environments like EOSC
All of the above mentioned packaging strategies can easily be used in arbitrary cloud environment like

the EOSC. cvmfs has the slight advantage that additions and updates can more easily be deployed cloud-

wide since all modifications become available on all nodes or instances (like docker images) with a single

deployment (up to cache-invalidation), unless requiring updates of system-packages. Being entirely non-

intrusive, cvmfs installations need to be tested for functionality, but much less for security vulnerabilities

(unless providing services operated under elevated privileges).

Deployment close to the instrument
As soon as the applications are integral part of experiments (which is valid for all use cases) a

deployment with cvmfs installations is not very appealing. It’s crucial for experiments to rely on as little

external dependencies as possible. For instrument related and controlled, automated deployment and

system management with substantial external dependencies, there currently is hardly a way around pre-

packaged installations, either in form of regular packages (rpm, deb), or containers. Though the focus of

the work package is on data analysis as a service in remote, distributed environments, it’s clear that for

the major analysis frameworks, pre-packaged installations can safely be expected to be available.

Summarized
In the following table we aimed to summarize the different methods, and score with respect to various

aspects. The scores are quite subjective, but it’s apparent that there is not the ultimate packaging tool

which outperforms and covers all aspects of deployment. For actually sharing “packages” and minimizing

efforts at facilities, for both open source and closed commercial applications, the sharing of build-recipes

(for container, packages, conda, cvmfs) is by far the most unproblematic way. Publishing recipes on git

together with appropriate web-hooks enables then automated builds, and triggering of automated

deployment. Tools are readily available for all major packaging methods, and container builds.

 Packages
(score: 15)

CVMFS
(12)

Docker
[Registry] (14)

Singularity
[Registry] (14)

Build Recipes (19) Notebook Hub
(13)

Federation Simple.
Conflicts!

Simple.
No conflicts.

Simple.
Conflicts!

Simple.
Conflicts!

Simple. Not that simple

Re-use of deployment
across labs (open source)

high. requires
Validation.

high. Requires
Validation.

High. requires
Validation.

High. requires
Validation.

Medium High.

Re-use of deployment by
users (open source)

Quite simple. Quite simple Medium. Requires
local docker

Medium. Requires
local singularity

Medium. Requires
a bit of knowledge

High.

Re-use of deployment
across labs (licensed sw)

Not simple at all no no no yes Depends on the
application

Re-use of deployment
across user (licensed sw)

no no Possible with
special registry

Possible with
special registry

yes Possible with
special registry

OS agnostic no no yes yes yes somewhat

Permission Install with admin
rights

No system
attachment other
than mount

Usually requires
admin privileges
inside container

Admin privileges
on build engine

None required.
Building and
deploying see
registries

None required.

Security Safe.
Validation!

Safe. Non-intrusive Medium to high.
Breakouts risky

High. Runs in user
space

Container security
applies

Fairly safe. Runs in
user spaces.

Cloud usability Good if images are
under your control

Good Good. Good. If cloud
supports it

Good. If build
engine available

Ok in container

HPC usability Good Medium Good. Good. Good. If build
engine available

Ok in container

Mass deployment Good Good Good Good Good Ok in container

Analysis Reproducibility Poor Poor Ok Good Ok Ok in container

Dependency tracking Good Has to be self-
contained.

Good. Depends on
container-build

Good. Depends on
container-build

Good. Depends on
container-build

Ok when using
container

Deployment speed Good Good Medium. Depends
on daemons cache

Medium to slow.
Big images.

Slow. Need to
build and deploy.

Medium.

Update speed Good Medium Good for base
images widely
used

Good for base
images widely
used

Slow Medium

Effort per application Medium.
Validation.

Low-Medium Low-Medium Low-Medium Low High. Requires at
least some coding

Total effort for lab Medium Low-Medium Low-Medium Low-Medium Low High

Total effort for user Low Low Medium Medium High Low

 Score: +2 Favourable

 Score: +1 Ok

 Score: +0 Has some issues

 Score: -1 Poor

Figure 1: proposed layout for publication of recipes and packages on github/calipsoplus

4. Provisioning packages

As described above the most suitable deployment strategy depends on a number of factors, and is

continuously evolving as the containerization, storage and cloud platforms evolve. In most cases the

same recipe can be recycled for different forms of packaging with minor modifications. For example a

conda recipe can easily be used to package an application as a docker or singularity container.

The following table lists the currently available recipes and packages

 CrystFEL Ptycho
Shelves

Savu pyFAI PyMca

Docker Yes (4) Yes (1) Yes Yes (2) In preparation

Docker recipe Yes (3) Yes (1) Yes Yes (1) Yes (1)

Singularity Yes (3) Yes (1) Yes Yes (1) Yes (2)

Singl. recipe Yes (3) Yes (1) Yes Yes (1) Yes (1)

CVMFS In preparation In preparation in preparation In preparation In preparation

cvmfs recipe Yes (1) Yes (1) Yes (1) Yes (1) Yes (1)

RPM recipe Yes (3) In preparation In preparation Yes (1) Yes (1)

RPM package Yes (2) In preparation In preparation Yes (3) Yes (1)

DEB recipe In preparation In preparation In preparation Yes (1) Yes (1)

DEB package Yes (1) In preparation In preparation Yes (3) Yes (1)

Notebook Yes (3) No - - -

Other - - - Conda, pypi Conda, pypi

Table 1: Available packages. Numbers in brackets indicate the number of sites where a package or recipe has been tested
or is being used in productions.

 Figure 2: Running pyFAI from singularity: singularity run --app pyFAI-
benchmark pyFAI.simg

The following table describes the deployment and availability of the five scientific data analysis

frameworks on different sites or platforms.

 CrystFEL Ptycho Shelves Savu pyFAI PyMca

Project Partner in JRA2

ALBA Production Production

DESY Production Yes Production Production

DIAMOND Production Production

ELETTRA

ESRF Production Production

PSI Production Production

SOLEIL

Other Project Partner

Eur.XFEL Production

HZB

MAX IV Production

External Infrastructures

EOSC Yes Yes

ESS Yes

HPC Production
Table 2: Yes: has successfully been tested on site. Production: is used in production at site

The availability of a "remote desktop environment" as a docker container4, developed for the

architecture blueprint D24.2, allows to execute all of the use cases in such an encapsulated desktop

environment. We can hence guarantee that an identical framework can be offered at each of the

facilities, with fully functional use case applications. In addition it will allow users executing almost

any application of choice available as a singularity package.

In addition to the encapsulated environment, all five use cases can readily be executed on arbitrary

platforms (meeting the minimal hardware requirements) which extends the capabilities to multi-host

environments and the utilization of hard accelerators (i.e. GPGPUs).

4
 https://hub.docker.com/r/danielguerra/ubuntu-xrdp/

5. Next steps

All applications required to execute the use cases on (almost) arbitrary platforms have been

packaged in all relevant formats. From a user perspective, the singularity packages are most

convenient to execute, from an administrators perspective regular packages (deb, rpm) are easiest to

control and deploy in managed environments. In particular for Docker and Singularity automated

builds have been enabled via github and the registries for docker and singularity, respectively. Only

exception is the Ptychoshelves framework, which is currently awaiting publication and release of the

code.

However, the packages need to be tested at a larger number of sites and a larger number of actual

users, as envisaged for the next deliverable. Particularly important will be the integration into the

facilities portals (selectable via a central hib) as outlined by the architecture blueprint. To facilitate

local testing at all sites we aim to establish a registry of packages (repository) for package sharing.

Recipes are being published on github, and are readily available for further tests.

Some sites will want to add additional packages which are used locally. All sites are encouraged to

add their major Packages to the PaNdata software catalogue (https://software.pan-data.eu/) and

publish recipes on github (https://github.com/Calipsoplus).

https://software.pan-data.eu/

