
CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the
World

Deliverables

Deliverable
Number

D24.3

Deliverable
Title

Cross site use case requirement report including
comparison of existing solutions. (Month 12)

Lead
Beneficiary

PSI

Type Use case requirement

Dissemination
Level

Public

Due date of
delivery

Month 12

Deliverable report
Premise

The present deliverable describes cross site use case requirements and reflects a
comparison of existing data analysis solutions at the different facilities (see ANNEX 1).
From the existing solutions a set of use cases is selected as suitable candidates for
providing harmonised solutions that can be transferred from one to another site (see
ANNEX 2).

The aim of the above described use case selection is to build up demonstrators for remote
data analysis for a small number of archetypal experiments. The demonstrators will build
on the HPC platforms of each participating institute. The demonstrators will be cloud based
in those institutes where cloud technology is deployed. In the other institutes the
demonstrator will run on standard HPC hardware. A web portal will ensure users to have a
common user experience.

Description of Work

WP24: Demonstrator of a Photon Science
Analysis Service

1. Introduction
The present document presents a comparison of existing data analysis solutions at different
facilities and describes the selection procedure for the different use cases and their leading
house facilities.

Deployment of complex data analysis frameworks and tool-chains is a common task at
research facilities and frequently a major hurdle for scientists, hampering rapid data

CALIPSOplus deliverable D24.3 - Page 1 of 5

Ref. Ares(2018)2530476 - 15/05/2018

CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the
World

analysis and publications. Simple assembly of integrated and deployable applications
reduces the RI efforts as well as it accelerates the scientific process.

The selected use case applications will be implemented as deployable packages, as pre-
configured virtual machines or as containers. Virtual machines or containers provide
encapsulated user environments, which can be archived together with the experimental
data, thereby capturing valuable provenance data and strongly supporting reproducibility of
the original experiment and data analysis workflows

2. Data analysis application USE CASE SURVEY amongst
CALIPSOplus members

A survey using, google docs, was performed among the different CALIPSOplus members to
compile a list with "reusable" scientific analysis software use case candidates at the
different facilities.

Feasible candidates for use cases were the applications for online analysis of scientific data,
which are at the "end" of an analysis chain, and therefore producing results which are
directly useful for publications. However, any other application considered re-usable for
other sites could be nominated. "Application" could also mean libraries, toolboxes or
components from which full applications could be more easily derived. The important
selection criterium is the “re-usability” at other sites.

In case a software is selected as use case, the corresponding site owning the selected
software, will play the role of the "leading house". The leading house further develops the
application and makes it available to the other sites for the local usage. Each site was able
to propose several candidates for use cases. In the end a set of three application use cases,
from different sites, was selected (see ANNEX1).

Questions of Survey were the following:

1. E-Mail-Address
2. Name of the application (or library,toolbox..)
3. Name and Email of contact person(s) (will be asked questions relevant for the use case

selection process)
4. Name and email of main developer
5. Site ("leading house", e.g. ESRF)
6. Provided functionality and features

a. What would be the steps needed to make the software available and usable at
other sites. Mention current local dependencies which would need to be
substituted

b. Is further functional development needed or planned? For which features?
c. If the software is already described on a software catalog e.g. https://software.pan-

data.eu/ please provide URL

7. Select features of the software (multiple selections allowed)

CALIPSOplus deliverable D24.3 - Page 2 of 5

CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the
World

8. How many users do use the software already today? Is

there already a "community" using (and/or improving) the

software?

9. What is the (foreseen) license under which the software
can be used?

10.Do you know of similar applications already in use at
other sites which have an overlapping functionality with
the proposed software?

11.Technical details like provided application stack,
language, needed, operating system etc.?

12.What level of software support for other users can
realistically be offered for the software in future (type of
support, amount of longterm available manpower etc)?

13.What documentation/user guide/tutorial is available or
planned for the software?

14.Any other comment about the software which you
consider relevant for the selection?

The detailed answers of beneficiaries CALIPSOplus can be found in the table with the
outcome of the use case survey see ANNEX1. The table shows the broad application
spectrum available at the different facilities. A selection was made from this table acording
to the selection criteria that were described in section 2.

From the table in ANNEX 1, 5 use cases were selected namely:

1. CrsytFEL leading house DESY

CrystFEL is a suite of programs for processing diffraction data acquired "serially" in a
"snapshot" manner, such as when using the technique of Serial Femtosecond
Crystallography (SFX) with a free-electron laser source. CrystFEL comprises programs
for indexing and integrating diffraction patterns, scaling and merging intensities,
simulating patterns, calculating figures of merit for the data and visualising the
results. Supporting scripts are provided to help at all stages, including importing data
into CCP4 for further processing.

2. Ptycho Shelves leading house PSI
Ptychography is a technique that combines scanning and coherent diffractive
lensless imaging. In its more conventional configuration a sample is scanned through
a beam and for each scanning point a diffraction pattern is measured, making sure to
have some degree of overlap between neighboring scanning positions. The
diffraction patterns are then fed to a iterative reconstruction algorithm to reconstruct
the complex-valued incident wavefield and complex-valued sample transmissivity. In
doing this one does away with image forming optics and can obtain imaging
resolution not bounded by their quality and aberrations.
Ptycho Shelves is an innovative and conceptually-simple modular framework for
ptychography reconstructions. With the constant development of algorithms for
ptychography there is currently a plethora of different options for reconstruction
algorithms, or engines. Furthermore, different engines offer different features for
correction of experimental imperfections. Hence it becomes important to be able to
stack together different modules such that different engines can be executed in
series, with the output of one algorithm being the initial guess of the following. Along
with the package come several of currently used ptychography algorithms and the
framework allows for further expansion.

CALIPSOplus deliverable D24.3 - Page 3 of 5

CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the
World

At some experimental stations there are multiple X-ray detectors available, or
different options for computing sample positions based on several interferometric
readings. Ptycho shelves also offers flexible modules for switching between different
detectors, data preparation functions, or computations of sample positions.

3. Savu leading house Diamond.
Savu is a Python package to assist with the processing and reconstruction of parallel-
beam tomography data. The project originated in the Data Analysis Group at the
Diamond Light Source (UK synchrotron) to address the growing, and increasingly
complex, needs of the tomography community.
Designed to allow greater flexibility in tomography data processing, Savu is capable
of processing N-dimensional full-field tomography and mapping tomography data,
along with concurrent processing of multiple datasets such as those collected as part
of a multi-modal setup. Savu is currently in use across the tomography beamlines at
Diamond to reconstruct both full-field tomography data and multi-modal, mapping
tomography data.
Savu is an object-oriented Python framework, with a modular plugin architecture.
The framework handles the movement of the data, in serial or parallel on a local PC
or cluster, and each plugin performs a specific independent task, such as correction,
filtering, reconstruction. Savu process lists, tailored to a specific experiment and
passed to the framework at runtime along with the data, detail the processing steps
that are required. The process list is created using the Savu configurator tool, which
stacks together plugins chosen from a repository.

4. pyFAI leading house ESRF
2D area detectors like CCD or pixel detectors have become popular in the last 20
years for diffraction experiments (e.g. for WAXS, SAXS, single crystal and powder
diffraction). These detectors have a large sensitive area of millions of pixels with high
spatial resolution. The software package pyFAI has been designed to reduce SAXS,
WAXS and XRPD images taken with those detectors into 1D curves (azimuthal
integration) usable by other software for in-depth analysis such as Rietveld
refinement, or 2D images (a radial transformation named caking in FIT2D). As a
library, the aim of pyFAI is to be integrated into other tools with a clean pythonic
interface or being used directly with the Jupyter interface. However pyFAI features
also command line and graphical tools for batch processing, converting data into q-
space (q being the momentum transfer) or 2θ-space (θ being the Bragg angle) and a
calibration graphical interface for optimizing the geometry of the experiment using
the Debye-Scherrer rings of a reference sample.

5. PyMca leading House ESRF
X-ray microscopy is a common technique at synchrotron facilities that can be
performed in different modes (scanning or full field) using a large variety of
techniques (X-ray fluorescence, X-ray Absorption Spectroscopy, X-Ray Diffraction…)
often combining more than one technique simultaneously. There is a clear need to
have applications able to explore X-ray microscopy datasets. PyMca is one of them.
The programs aXis2000 and MAPS are notable alternatives based on a commercial
language (IDL). A port of MAPS to Python is going on.
PyMca was initially developed to fulfill user needs related to X-ray Fluorescence
Analysis (XRF) and it can be a considered a reference in that field like AXIL, GeoPIXE
or GUPIX. It offers all what users can expect in that field (qualitative and quantitative
analysis, interactive and batch processing, large variety of data formats support
-including HDF5 NeXus-) while being the only free and open source alternative
among the reference applications.
Besides those specific applications, its visualization and data exploring capabilities
make of PyMca a Swiss Army knife for the synchrotron user

CALIPSOplus deliverable D24.3 - Page 4 of 5

CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the
World

Next steps
Based on the selected use cases listed in ANNEX 1&2 the next steps will be to prepare the
software to make them available to other interested sites. In order to do this any existing
local boundary conditions, at the different facilities, or special requierments need to be
isolated and either removed or made adaptable to different environments.

Subsequently an example deployment on other sites, exploiting the outcomes of the other
workpackage tasks, is foreseen

Conclusion
In this deliverable D24.3 we collected existing example applications for data analysis as
used at the different facilities. The questionnaire above demonstrated the wide range of
available applications. Often applications are mainly used at one or two sites only. The goal
of WP24 is to make them available for the different sites.

From this set of applications 3 example applications were described in more detail as a
preparation for the next step, which ultimately aim for making the corresponding data
analysis software reusable across the scientific user community.

ANNEX 1 Table with outcome of the use case survey

ANNEX 2 Detailed use case descriptions of the 3 selected use cases

CALIPSOplus deliverable D24.3 - Page 5 of 5

Copy of Collect Calipso JRA2 Use Case Candidates (Responses)

114/02/2018

Email address
Name of the application
(or library,toolbox..)

Name and Email of
contact person(s) (will
be asked questions
relevant for the use case
selection process)

Name and email
of main
developer

Site ("leading
house", e.g.
ESRF) Provided functionality and features

What would be the steps
needed to make the
software available and
usable at other sites.
Mention current local
dependencies which
would need to be
substituted

Is further functional
development needed or
planned ? For which
features ?

If the software is already
described on a software
catalog e.g. https:
//software.pan-data.eu/
please provide URL

Select features of the
software (multiple
selections allowed)

How many users do use
the software already
today ? Is there already
a "community" using
(and/or improving) the
software

What is the (foreseen)
license under which the
software can be used

Do you know of similar
applications already in
use at other sites which
have an overlapping
functionality with the
proposed software ?

Technical details like
provided application
stack, language,
needed, operating
system etc

What level of software
support for other users
can realistically be
offered for the software
in future (type of
support, amount of
longterm available
manpower etc)

What
documentation/user
guide/tutorial is available
or planned for the
software

Any other comment
about the software which
you consider relevant for
the selection

alun.ashton@diamond.ac.uk DAWN
Jacob.Filik@diamond.
ac.uk

Jacob.
filik@diamond.
ac.uk Diamond

Data Visualisation, Data processing (SAXS, XPDF, XRD,
ARPES, PEEM, XAS….), Scientific Python IDE, Data
webserver functionality. GUI or headless.

Already used in multiple
sites.

Continuous
developments with ~5
releases a year. some
details on http://dawnsci.
org/ No.

Full Application,
Library/Toolbox, Pipeline
of multiple components,
Open Source Software,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis,
Can be used in batch
queue systems

Over 150 downloads a
month, extensive use at
Diamond Beamlines.

EPL (Eclipse Public
License)

No single application but
overlaps with domain
applications e.g. PyFAI

Supported on Linux,
Windows and MacOS.
Main application in
Java/RCP with possible
Python interactions.
Download bundle has all
dependencies.

Over 15 active multi site
developers for over
5years, support given for
international synchrotron
users/data processing
as fits in with Diamond
use cases, reduced
support for other
domains on a case by
case basis. No current
perceived reduction in
support.

http://dawnsci.org/,
including youTube
videos etc., training and
other workshops
conducted on a
domain/beamline basis.

Build on extensible
framework that can be
extended from within the
application, also has
fledgling marketplace to
exchange and distribute
extensions. Some
components spun out
into own open source
projects e.g. Eclipse
January. Is one of the
flagship projects in the
international Eclipse
Science and Industrial
Working Group.

alun.ashton@diamond.ac.uk Savu
mark.
basham@diamond.ac.uk

nicola.
wadeson@diam
ond.ac.uk Diamond

Flexible framework for massively parallel, cluster enabled
data processing of high multidimensional 6D+ and
multimodal (absorption, florescence, diffraction)
tomography data.

Already used on multiple
sites, standard install
with main dependency
Python and any required
scientific libraries e.g.
PyFAI, PyMCA,
TomoPy, Astra

Future developments
available : https://waffle.
io/diamondlightsource/sa
vu, e.g. use of object
stores as data transfer
mechanism. No

Full Application,
Library/Toolbox, Pipeline
of multiple components,
Open Source Software,
Integration into a "portal"
possible or even
available, Can be used
in batch queue systems,
MPI

continuous usage
@diamond, installed on
many sites e.g. Max-IV,
University of Hull, STFC. Apache V2/GPLv3

not in entirety, elements
or similar functionality
available e.g. TomoPy Python/Linux/HDF5/MPI

Already running
workshops at similar
facilities, as well as
local/similar sites, both
for users and
contributors. Given the
domain, its unlikely that
support does not fit
within DLS operational
requirements.

http://savu.readthedocs.
io/en/latest/
documentation, user
guide etc available.

Relatively young (under
3yrs) project, would be
invaluable for
researchers to have
access to commercial or
private cloud processing
due to the nature of the
data. Some work already
underway with STFC to
explore these
possibilities.

alun.ashton@diamond.ac.uk SuRVoS
mark.
basham@diamond.ac.uk

imanol.
lungeo@diamon
d.ac.uk

Diamond/Nottin
gham
University

Interactive segmentation of tomography datasets using
machine learning and vision methodologies.

in use on other sites,
needs GPU cards local
or e.g. AWS.

Predominantly algorithm
development and
application to new
tomography use cases no

Full Application, Cloud
enabled, e.g.
containerized, Open
Source Software,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis

Growing community due
to its time saving
properties in image
segmentation. Apache V2

Commercially available
packages and some
similar endeavours in
CryoEM Python/Linux/CUDA

best efforts online,
currently only one
dedicated developer with
long term support.

https:
//diamondlightsource.
github.io/SuRVoS/

Already used on AWS
during training
workshops.

j.kelling@hzdr.de SpekNG
Nils Schmeißer, n.
schmeisser@hzdr.de

Jeffrey Kelling, j.
kelling@hzdr.de HZDR

decomposition of multi-component spectra obained by e.
g. EXAFS, TRLFS

software can work
stand-alone

implementation of more
analysis methods, UI
improvements, tie-in to
datamanagement
systems

Full Application,
Library/Toolbox, Open
Source Software,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis,
Can be used in batch
queue systems

The software is currently
in a closed beta with six
users. One of its
features makes it a
modern successor to the
program described in [1],
which provides a
prospective user
community.

[1] A. Roßberg, T. Reich,
and G. Bernhard.
Analytical and
Bioanalytical Chemistry,
376(5):631–638, Jul
2003. GPLv3+

Similar functionality is
usually implemented in
collections of Matlab
scripts within the target
community.

C++, webtoolkit (web
UI), armadillo (BLAS)

In the long-term we plan
for up to one person to
maintain an develop the
software.

The web-UI is self-
explanatory to users in
the field. Required
documentation for the
headless variant for
batch systems will be
provided in text form.
Code-documentation is
produced using
Doxygen.

j.kelling@hzdr.de PIConGPU as a Service
g.juckeland@hzdr.de, m.
bussmann@hzdr.de

Sebastian
Starke, s.
starke@hzdr.de HZDR

This project aims to provide a user-friendly and
interactive web-interface for high-performance plasma
physics simulations. Our front-end provides guidance
during the setup of simulation parameters, manages
running and past simulations on a high performance
computing (HPC) system. It also provides visualizations
of data produced by both actives and completed runs.

Our current back-end use-case is the highly efficient and
widely used Particle-in-cell code PIConGPU[1] where
abstraction of the involved simulation set-up procedure is
expected to open this application to an even wider group
of users. The front-end is designed to be adaptable to
other use-cases, e.g. ab-initio or Monte Carlo codes, in
the future.

[1] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A.
Huebl, G. Juckeland, T. Kluge, W. E. Nagel, R. Pausch,
F. Schmitt, U. Schramm, J. Schuchart, and R. Widera. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC '13, page 5:1, New York, NY, USA, 2013.
ACM.

Adding support for local
flavors of HPC batch
and module systems.

Currently PIConGPU
use-cases for the
Eupraxia[2] and
EUCALL[3] projects are
being implemented.

[2] http://www.eupraxia-
project.eu/
[3] https://www.eucall.
eu/

Pipeline of multiple
components, Open
Source Software,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis,
Can be used in batch
queue systems

The service set-up at
HZDR is provided for
researchers in the
Eupraxia and EUCALL
projects. GPLv3+

To our knowledge no
similiar UI is in use at
other sites. Due its work-
flow abstracting
functionality, it bears
some similarity with
proprietary cloud
services offered in other
areas, i.e. machine
learning.

Python, Jupyter, Batch-
system

any back-end simulation
tool, at the moment
PIConGPU

This infrastructure is a
main service being
developed by the
computing department at
HZDR, with more than
one person available to
drive it.

Main development of
PIConGPU is being
done by the institute for
plasma physics at,
HZDR. This allows new
PIC use-cases to be
implemented quickly.

An installation guide for
the front-end can be
made available. User
documentation for the
front-end is not required,
apart form description
displayed to the user
during simulation set-up.

manuel.guizar-sicairos@psi.ch
cSAXS Matlab scanning
SAXS package

Manuel Guizar Sicairos
(manuel.guizar-
sicairos@psi.ch) CXS group SLS

Basic functionality for reading data, radially integration of
data. Assemble of scanning SAXS data into orientation
and degree of orientation images based on different q-
ranges.

Matlab. A supported C-
compiler for mex
functions. Software is
available online. Matlab
functions need the
cSAXS Matlab base
package. https://www.
psi.ch/sls/csaxs/software

In our group we
continuously develop
novel methods for
analysis of SAXS data,
such advances will be
incorporated into the
package.

Pipeline of multiple
components, Open
Source Software, Can
be used for interactive
analysis

Software today is used
in experiments at the
beamline. Also a few
users that need to
reprocess some data
use it.

Creative Commons
Attribution-
NonCommercial-
ShareAlike 4.0
International (CC BY-
NC-SA 4.0) license.

Yes, but I don’t know
them specifically neither
which ones are available
online.

Matlab. Linux functions
are used for the data
preparation.

From our group, close to
zero for non-users.

Users guide and
description of functions.
A journal publication
exists that gives some
details on the
functionality (http://dx.
doi.org/10.1088/1367-
2630/11/12/123016).

manuel.guizar-sicairos@psi.ch SAS tensor tomography

Manuel Guizar Sicairos
(manuel.guizar-
sicairos@psi.ch) CXS group SLS

Processing of SAS data for tensor tomography.
Reconstruction of anisotropic SAS signal in 3D.

Matlab functions need
the cSAXS Matlab base
package. Preparation of
the inputs for tensor
tomography can be done
with the cSAXS
scanning SAXS
package. https://www.
psi.ch/sls/csaxs/software

In our group we
continuously develop
novel methods for
analysis of SAXS data,
such advances will be
incorporated into the
package.

Pipeline of multiple
components, Open
Source Software, Can
be used for interactive
analysis

Software today is used
in experiments at the
beamline. Also a few
users that need to
reprocess some data
use it.

Creative Commons
Attribution-
NonCommercial-
ShareAlike 4.0
International (CC BY-
NC-SA 4.0) license. No

Matlab. Linux
commands are used for
the data preparation.

From our group, close to
zero for non-users.

User guide and
description of functions.
A journal publication
exists that describes the
method. (http://dx.doi.
org/10.
1038/nature16056)

manuel.guizar-sicairos@psi.ch
cSAXS Matlab
tomography package

Manuel Guizar Sicairos
(manuel.guizar-
sicairos@psi.ch) CXS group SLS

Preprocessing, alignment and reconstruction of
tomograms from phase and amplitude projections.

Matlab with parallel
toolbox, cSAXS Matlab
base package, CUDA for
GPU functions https:
//www.psi.
ch/sls/csaxs/software

In our group we
continuously develop
novel methods for
processing and analysis
of tomography data,
such advances will be
incorporated into the
package.

Pipeline of multiple
components, Open
Source Software, Can
be used for interactive
analysis

Software today is used
in experiments at the
beamline. Also a few
users that need to
reprocess some data
use it.

Creative Commons
Attribution-
NonCommercial-
ShareAlike 4.0
International (CC BY-
NC-SA 4.0) license.

Yes, ASTRA has its
capability to reconstruct
tomograms on its own,
we use ASTRA lower
level functions and apply
them to our specific
needs.

Matlab. Linux
commands are used for
the data preparation

From our group, close to
zero for non-users.

User guide and
description of functions.
Journal publications
exist that describe
different functionalities of
the package.

cxs@fake.ch Ptychography

https://www.psi.
ch/coherent-x-ray-
scattering/people

https://www.psi.
ch/coherent-x-
ray-
scattering/peopl
e SLS

Preprocessing of data and ptychographic reconstruction
with various engines. An innovative and simple
framework for ptychography that allows easy addition of
reconstruction engines and flexible.

Software wrapper and
prototype engines are in
Matlab. One of the
reconstruction engines is
highly optimized in C++,
can be compiled and run
independently with
standard libraries.
Matlab functions need
the cSAXS Matlab base
package (https://www.
psi.
ch/sls/csaxs/software).

In our group we
continuously develop
novel methods for
ptychography and these
would be incorporated in
this framework.

Pipeline of multiple
components, Open
Source Software, Can
be used for interactive
analysis, Can be used in
batch queue systems

Software today is used
in experiments at the
beamline. Also a few
users that need to
reprocess some data
use it.

Custom PSI license
similar to share-alike,
non-commercial.

Yes, with partial overlap.
Ptypy, PtychoLib, PyNX,
CAMERA SHARP.

Matlab. Linux
commands are used for
the data preparation.
Optimized C-code
engine can be run
independently from
Matlab.

From our group, close to
zero for non-users.

There is documentation
in an internal wiki which
could be shared. A
journal publication is
also planned.

There are worries about
having any individual
name associated with
this package in any
shared platform. Hence
as contact information
contact the CXS group.
https://www.psi.
ch/coherent-x-ray-
scattering/people

https://diamondlightsource.github.io/SuRVoS/
https://diamondlightsource.github.io/SuRVoS/
https://diamondlightsource.github.io/SuRVoS/
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people
https://www.psi.ch/coherent-x-ray-scattering/people

Copy of Collect Calipso JRA2 Use Case Candidates (Responses)

214/02/2018

Email address
Name of the application
(or library,toolbox..)

Name and Email of
contact person(s) (will
be asked questions
relevant for the use case
selection process)

Name and email
of main
developer

Site ("leading
house", e.g.
ESRF) Provided functionality and features

What would be the steps
needed to make the
software available and
usable at other sites.
Mention current local
dependencies which
would need to be
substituted

Is further functional
development needed or
planned ? For which
features ?

If the software is already
described on a software
catalog e.g. https:
//software.pan-data.eu/
please provide URL

Select features of the
software (multiple
selections allowed)

How many users do use
the software already
today ? Is there already
a "community" using
(and/or improving) the
software

What is the (foreseen)
license under which the
software can be used

Do you know of similar
applications already in
use at other sites which
have an overlapping
functionality with the
proposed software ?

Technical details like
provided application
stack, language,
needed, operating
system etc

What level of software
support for other users
can realistically be
offered for the software
in future (type of
support, amount of
longterm available
manpower etc)

What
documentation/user
guide/tutorial is available
or planned for the
software

Any other comment
about the software which
you consider relevant for
the selection

frank.schluenzen@desy.de CrystFEL
frank.schluenzen@desy.
de

T.A.White http:
//www.desy.
de/~twhite/crystf
el/contact.html DESY / CFEL

suite of programs for processing diffraction data acquired
"serially" in a "snapshot" manner

no local dependencies.
It's available as source,
singularity and docker
images continuously developed no

Full Application, Pipeline
of multiple components,
Cloud enabled, e.g.
containerized, Open
Source Software,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis,
Can be used in batch
queue systems, It's open
software, but underlying
software (ccp4, xds, etc)
is strictly speaking not
re-distributable

unknown. The
community doing serial
crystallography is small,
but growing

GPL. CCP4 has it's own
site-limited license. no

Linux, MacOSX. Mostly
C/C++ code

support is limited. on-site
hands-on

detailed tutorials and lots
of open access data

andy.gotz@esrf.fr PyFAI
Armando Sole -
sole@esrf.fr

Jerome Kieffer -
kieffer@esrf.fr ESRF

Data reduction for diffraction e.g. powder diffraction, sax,
waxs, dct, ...

Install pyfai + silx +
jupyter (optional)

Jupyter notebook
examples

https://software.pan-
data.
eu/software/73/pyfai

Library/Toolbox, Open
Source Software, Can
be used for interactive
analysis, Can be used in
batch queue systems Yes MIT FIT2D Python, C, OpenCL

Help with using and
calibration

Complete
documentation

majid.ounsy@synchroron-soleil.fr Passerelle EDM

majid.
ounsy@synchrotron-
soleil.fr

iSencia Belgium
NV (erwin.de.
ley@isencia.be) SOLEIL

Modular server solution platform for decision process
management. Applied for interactive and automated
control, data acquisition and analysis processes.
Core concepts are process models, rules-based analysis
and integration with:
•Python, JavaScript
•Control and service bus-es (Tango, SOAP, REST, …)
•Web forms UI for user interactions
•Event-based process triggers
•Resource/grid managers like SGE, SLURM
Includes flexible clustering features & data grid.
Fully-featured web UI incl graphical process editor,
running & debugging, role-based security, asset
versioning, execution traces etc.
Configurable dashboards for overall process monitoring
and detailed analysis visualization.

Passerelle EDM is a
commercial product for
which a license should
be purchased.
Installations can be
hosted in the cloud or
local on-site

Full Application,
Library/Toolbox, Pipeline
of multiple components,
Cloud enabled, e.g.
containerized,
Integration into a "portal"
possible or even
available, Can be used
for interactive analysis,
Can be used in batch
queue systems, core
engine is open source

Used by thousands of
operators and
technicians in Belgian
telecom.
Used since > 10 years at
Soleil, Also used since 5
years at ESRF
Yes, there is a
community : iSencia
collaborates and co-
creates the software with
its customers. Core
engine evolves in open
source, newest version
is the Eclipse Triquetrum
project, within the open-
source Eclipse
Foundation’s Science
Working Group.

Commercial for the
server application,
EPL/APL for the core
engine

None with all these
functionalities

Based on Java running
in a JBoss application
server. Standalone or
Docker image. Uses a
relational Database for
storing process models,
configuration data,
execution traces, …
English/French/Dutch
language,
Cross platform, typically
used on Linux variants,
MS Windows PCs.

Help files,
documentation wiki,

ferenc.borondics@synchrotron-
soleil.fr

Spectral Orange, Soon
to be extended with
other toolboxes. The
name of the application
will be Quasar

Ferenc Borondics
(ferenc.
borondics@synchrotron-
soleil.fr)

Marko Toplak
(marko.
toplak@gmail.
com) SOLEIL

Environment for the analysis of spectral data : currently
Infrared data, developing code to extend the capabilities
to processing of general spectromicroscopy data, data
mining, hyperspectral data analysis, statistical methods,
machine learning, data visualization, multimethod
analysis, plotting, publication quality figure generation

None, freely
downloadable and open
source Yes, for multiple features

https://github.
com/markotoplak/orange
-infrared

Full Application,
Library/Toolbox, Pipeline
of multiple components,
Open Source Software,
Can be used for
interactive analysis, Can
be used in batch queue
systems Yes GNU GPL

None with all these
functionalities

Installable in multiple
ways, English language,
cross platform Help files, video tutorials

This is an international
collaboration to
democratize data access
and data processing for
the scientific community.

majid.ounsy@synchrotron-soleil.fr Foxtrot

Majid OUNSY (majid.
ounsy@synchrotron-
soleil.fr)

Raphael
GIRARDOT
(raphael.
girardot@synchr
otron-soleil.fr) SOLEIL SAXS and XRPDF data reduction

Self installed with a zip
file (Java application)

Yes: Image stitching,
cartography http://www.xenocs.com

Full Application, Can be
used for interactive
analysis, Open Source
Version for academic
purposes ~50 Java, Python Fully documented

majid.ounsy@synchrotron-soleil.fr Flamenco

Majid OUNSY (majid.
ounsy@synchrotron-
soleil.fr)

Gregory
VIGUIER
(gregory.
viguier@synchro
tron-soleil.fr) SOLEIL

Soft XRay : ARPES, NEXAFS, Photo Electron Diffraction,
Microscopy Scanning Imaging spectroscopies data
reduction

Self installed with a zip
file (Java application) Yes

Full Application, Open
Source Software, Can
be used for interactive
analysis Java

https://software.pan-data.eu/software/73/pyfai
https://software.pan-data.eu/software/73/pyfai
https://software.pan-data.eu/software/73/pyfai
https://github.com/markotoplak/orange-infrared
https://github.com/markotoplak/orange-infrared
https://github.com/markotoplak/orange-infrared
http://www.xenocs.com

ANNEX 2 Use Case samples
CALIPSOplus WP24: Demonstrator of a Photon Science Analysis
Service

 Task 2, Deliverable 24.3

Name of Software/Package: CrystFEL
Data Analysis Use Case Example: MX

Lead: DESY

Introduction 2

Description 2

Requirements 2
Software, Licenses, Hardware 2
I/O (volumes, rates, formats) 2
Application Programming Interfaces (if any) 2
anything else 3

Reference Data 3
Sample Data 3
Sample scripts/procedure/notebook/recipes 3

Benchmarks 3
Platform(s) 3
Results 3

Deployment 4
Packages/Container/notebook ... 4

User Support 4

Future Developments, Roadmap 4

2

Introduction

CrystFEL is a suite of programs for processing diffraction data acquired "serially" in

a "snapshot" manner, such as when using the technique of Serial Femtosecond

Crystallography (SFX) with a free-electron laser source. CrystFEL comprises

programs for indexing and integrating diffraction patterns, scaling and merging

intensities, simulating patterns, calculating figures of merit for the data and

visualising the results. Supporting scripts are provided to help at all stages,

including importing data into CCP4 for further processing.

CrystFEL relies on the availability of one or more out of CCP4, XDS, DiRAX, FELIX,

MOSFLM for indexing. Other dependencies are readily resolved by standard

packages usually available from standard linux distributions.

Description

CrystFEL is a suite of programs for processing Bragg diffraction data acquired with a

free electron laser in a "serial" manner. Some of the particular characteristics of

such data which call for a specialised software suite are:

● Each crystal is used for only one exposure, and there is no oscillation, rotation

nor a large bandwidth or divergence. Therefore, many or all reflections are

partially integrated.
● The crystals might be very small and the illumination highly coherent, leading

to significant Fourier truncation effects on the detector.
● Many patterns, numbering tens of thousands or more, are required, so high

throughput automated processing is important.
● The crystal orientations in each pattern are random and uncorrelated, which

leads to special considerations during scaling and merging.

3

http://www.ccp4.ac.uk/

CrystFEL includes programs for simulating and processing patterns subject to the

above characteristics. For a description of the core components see

http://www.desy.de/~twhite/crystfel/manual.html

Additional components are described under

http://www.desy.de/~twhite/crystfel/programs.html

Requirements

Prerequisites:

● HDF5 > 1.8.0.
● FFW3
● GSL
● GTK, Cairo, Pango, GDK-bixbuf, libPNG, libTIFF, zlib

All of the prerequisites are available as standard packages in linux distributions.

Optional indexing applications:

● MOSFLM
● CCP4
● XDS
● Felix
● DirAx

At least one of the indexing routines need to be installed. It’s advisable to have

more than one of those.

Optional:

● OpenCL for GPU accelerated simulation of diffraction patterns.

Optionally, you can add OpenCL for GPU accelerated simulation of diffraction

patterns. sed.

 Software, Licenses, Hardware

4

Code: is available from http://www.desy.de/~twhite/crystfel/download.html or

https://stash.desy.de/projects/CRYS/repos/crystfel/browse both for stable releases

and development version.

Licenses

● CrystFEL GPL v3
● MOSFLM: unknown
● CCP4: The suite is available without cost to academic and non-profit

institutions who will not be using the CCP4 package for commercial activities,

subject to a completed CCP4 Academic License being returned to the CCP4

secretary. See http://www.ccp4.ac.uk/ccp4license.php
● XDS: XDS is free of charge for non-commercial applications
● Felix: unknown
● DirAx: unknown

Apart from CrystFEL itself none of the applications is actually open source.

● MOSFLM actually doesn’t declare a particular license, neither on the web-

page nor inside the downloadable package. Source code is available.
● CCP4 requires a signed license formed. Usage is free for academic activities

only. Source code is available.
● XDS is free for academic research. No source code available. XDS has an

expiry date. Deployment needs to be updated accordingly.
● Felix is available as binary upon request from the authors. No specific license

is declared in the corresponding publication
● DirAx does not specify a license. No source code available, only linux binaries

for download.

References for the indexing packages:

● MOSFLM: https://www.mrc-

lmb.cam.ac.uk/harry/imosflm/ver721/introduction.html
● CCP4: http://www.ccp4.ac.uk/
● XDS: http://xds.mpimf-heidelberg.mpg.de/
● Felix: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541352/
● DirAx: http://www.crystal.chem.uu.nl/distr/dirax/install.html

5

http://www.crystal.chem.uu.nl/distr/dirax/install.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541352/
http://xds.mpimf-heidelberg.mpg.de/
http://www.ccp4.ac.uk/
https://www.mrc-lmb.cam.ac.uk/harry/imosflm/ver721/introduction.html
https://www.mrc-lmb.cam.ac.uk/harry/imosflm/ver721/introduction.html
https://stash.desy.de/projects/CRYS/repos/crystfel/browse
http://www.desy.de/~twhite/crystfel/download.html

The licenses for the indexing programs, in particular for the CCP4 package, make a

redistribution of the entire framework at least difficult. The CCP4 license

(ftp://ftp.ccp4.ac.uk/ccp4/academic_software_licence.pdf) explicitly states that “the

Licensee may not distribute any CCP4 Application or any Derived Work based on

any CCP4 Application to any third party, or share their use with any third party

(whether free of charge or otherwise)”. Strictly obeying to the conditions, access to

a packaged/containerized application framework has to be limited to scientists

known to have agreed to the specific terms and only using it for purely academic

approaches.

Hardware requirements:

CrystFEL has no special hardware requirements. The use of GPGPUs to accelerate

the simulation of diffraction patterns is optional. Some parts of the package/pipeline

have high memory demands. With less than 8GB per core the software might easily

consume more than the available memory.

 I/O (volumes, rates, formats)

CrystFEL uses mostly HDF5, but also support standard MX formats like cbf or mtz.

Data volumes per dataset range between a few GB and a few 10TB. CrystFEL is

multi-threaded and some of the indexing algorithms (e.g. XDS) are supporting

hybrid OpenMP and MPI. The i/o rates hence depend on the available hardware

(number of cores and free memory), the indexing program used, and the size of the

dataset.

 Application Programming Interfaces (if any)

none.

Anything else

6

Nothing to add.

Reference Data

For deployment tests we have been using the data referenced on the CrystFEL

tutorial page, in particular the dataset available under http://www.cxidb.org/id-

21.html. Corresponding publication: Liu et al., Science 342 (2013) p1521. Doi:

10.1126/science.1244142

Sample Data

Vast amount of sample data are available on http://www.cxidb.org/

Sample scripts/procedure/notebook/recipes

Described in detail on the CrystFEL tutorial page:

http://www.desy.de/~twhite/crystfel/tutorial.html. Documentation and tutorials are

excellent and very easy to reproduce even for very inexperienced users.

Platform(s)

● Preferably any (recent) Linux distribution. Runs on Intel, AMD or Power based

platforms. Due to memory requirements ARM has not been investigated.
● Works for Mac OSX as well.
● Optional support for GPGPUs using OpenCL. So far only tested on Nvidia

GPGPUs.
● Might also be capable of using Intel MICs but hasn’t been tested.
● No support for Windows.

7

http://www.desy.de/~twhite/crystfel/tutorial.html
http://www.cxidb.org/id-21.html
http://www.cxidb.org/id-21.html

Benchmarks

 Results

The runtime behavior of CrystFEL has been investigated particular in view of

compute requirements. The tests were based on the well documented tutorials (see

http://www.desy.de/~twhite/crystfel/tutorial.html).

The dataset used is available as a 40GB tarball, containing 5775 images in HDF5

format. Each individual image has a size of roughly 6.6MB. The dataset provides a

very typical example.

The tutorial was executed in various different environments. Running a

containerized version of CrystFEL (docker, singularity) results in a virtually identical

execution time. We therefore just report benchmarks for a bare-metal use case.

CrystFEL is in most parts embarrassingly parallel, and in some parts entirely serial.

The application is however currently not MPI-capable. Scalability is hence dictated

by the number of images versus the number of cores. The actual cpu load running

data analysis on 32 cores is shown below to illustrate the resource consumption for

the individual processing steps.

The total execution time for the entire tutorial (all indexing and integration steps but

omitting visual, manual interventions) has been obtained depending on the number

of cores:

Number of cores 1 2 4 8 16 32 64

Total execution time [s] 77585 40706 21050 12390 6006 3787 3270

Speedup 1.0 1.9 3.7 6.3 12.9 20.5 23.7

8

http://www.desy.de/~twhite/crystfel/tutorial.html

Running on 64 cores, the total execution time is roughly 3300 seconds, or a little

more than 0.5s per image. Each image is processed 6 time during individual steps of

data analysis. In average processing spends 0.09s per image and task.

Data locality is hence crucial. Fetching the tarball from cxidb takes more than 30

minutes, more than 50% of the total execution time on 64 cores. Fetching the tarball

via https from a local cloud-store or via cvmfs reduces the transfer and extraction

time to roughly 480s, which still contributes significantly to the execution time, but

appears reasonable enough. Hosting the individual images for example on a cloud-

store and accessing the data via https/davs is however not an option at all. Davs is

poorly suited for multi-core access, stats on files are way too expensive and caches

too small to allow efficient access. Tests using davs via fusemounts increased the

execution time beyond any acceptable limit. It would be interesting to see the

9

behavior on a combined HDF5-file served by HDFserver, which will be tested at a

later stage.

The dataset used for the benchmarks is reasonably representative. However, some

serial MX datasets are orders of magnitude larger (up to 200TB) and diffract to

considerably higher resolution. The crystal characteristics (e.g. the lattice and unit

cell dimension) are likewise affecting the number of Bragg reflections and hence the

time of integration per frame/crystal. In particular the memory consumption, which

was negligible for the test case, can easily exceed 16GB per core.

Deployment

Apart from potential licensing issues (see above) the software and optional

components can readily be deployed at any site.

CrystFEL and some of the optional components are available as

● Packages (Centos 7, Debian)
● Dockerfile (recipe)
● Docker container (Centos 7 core image plus MPI components)
● Singularity container
● Sources
● Binary package (tar.gz) for Centos 7

First steps to wrap the application into a Jupyter notebook have been taken (see

below). Some processing tasks can be easily embedded and executed for example

on cloud function server fully exploiting elasticity of cloud infrastructures. The visual

inspection of intermediate results however relies on a number of different tools, like

perl, c+gtk, matplotlib. Embedding these into a jupyter notebook doubtlessly

requires some adoption.

Concept of deploying CrystFEL on elastic cloud resources

Cloud function services (aka serverless cloud platforms) allow providing functions in

a fully scalable manner. We are currently experimenting with OpenFaaS

10

(https://github.com/openfaas/faas) and openWhisk (https://openwhisk.apache.org/)

implementations, focusing on openWhisk.

Source: https://thenewstack.io/behind-scenes-apache-openwhisk-serverless-

platform/

Both allow elastic deployment of functions in combination with docker swarm,

kubernetes on an openstack platform. In essence, the function server launches a

docker container for each function invocation. In combination with kafka

(https://kafka.apache.org/) and prometheus (https://prometheus.io/) it allows to

invoke functions on incoming messages or events, e.g. automatically process

incoming images using CrystFEL (or any other pipeline like image calibration).

11

Source: https://thenewstack.io/behind-scenes-apache-openwhisk-serverless-

platform/

The entire infrastructure (openstack+kafka+prometheus+openWhisk) has been

configured and is ready to deploy CrystFEL functions. Currently we are facing two

minor problems: one problem is the aforementioned requirement of data locality. It’s

actually not foreseen to embed any network drives inside a function service. As a

workaround, NFS shares have been embedded to allow local data hosting. The other

problem relates to the partially non-redistributable nature of the software (e.g.

ccp4). openWhisk per default only supports public docker-images hosted on

dockerhub. We therefore stripped the docker image to contain exclusively GPL

licensed software and use mosflm (https://www.mrc-lmb.cam.ac.uk/harry/imosflm/)

for all indexing tasks. The stripped docker image will then be published on

dockerHub enabling deploying CrystFEL as a serverless cloud function invokable

from Jupyter notebooks or plain from the command line allowing to establish

“CrystFEL as a service” on a cloud based JupyterHub instance. This is still work in

progress.

Providing CrystFEL as a service using Jupyter Notebooks

It turned out to be almost trivial providing CrystFEL embedded into a Jupyter

Notebook (thanks to colleagues from European XFEL). The availability of a bash

kernel (http://jeroenjanssens.com/2015/02/19/ibash-notebook.html) greatly

12

http://jeroenjanssens.com/2015/02/19/ibash-notebook.html

facilitates the task. The installation of the bash kernel requires a few simple steps,

which can also be done in user space:

● pip install bash_kernel --user
● python -m bash_kernel.install
● jupyter notebook --generate-config

Starting a jupyter server remotely in user space then allows to run CrystFEL

painlessly in a web browser:

It might become necessary to adopt the small graphical tools to visualize peak

detection and cell refinement into Jupyter embedded applications. That’s currently

being investigated.

Having access to a compute cluster, the task of processing the 5775 images from

the tutorial dataset can easily be split into small problems. For example on the DESY

HPC platform the full integration of images can be done in less than 5 minutes from

within a Juypter notebook, currently only limited by the number of concurrent

13

process allowed on the platform. This reduces the computational time to roughly

0.1s/image and we expect that releasing the process limitation will further speed up

processing to 0.01-0.05s/image. It shows that the processing pipeline is very well

suited for cloud function based elastic services and that on-demand real time

processing is quite possible without major developments.

User Support

CrystFEL comes with very detailed tutorials and manuals. The documentation is

detailed enough to reproduce data analysis on existing openly accessible datasets.

In addition, hands-on tutorials are being offered.

Future Developments, Roadmap

We are currently investigating the use of Function as a Service (openFaaS,

openWhisk) to distribute the indexing part on arbitrary compute platforms, in

particular openstack in combination with dockerswarm/kubernetes. This allows

elastic scaling depending on the size of datasets in a very convenient manner. In

combination with kafka/prometheus it also offers “on-the-fly” data processing as

data arrive.

References

Primary references to cite when using CrystFEL and/or some of the optional

components:

1. CrystFEL: T. A. White, R. A. Kirian, A. V. Martin, A. Aquila, K. Nass, A. Barty

and H. N. Chapman. "CrystFEL: a software suite for snapshot serial

crystallography". J. Appl. Cryst. 45 (2012), p335–341.

doi:10.1107/S0021889812002312

14

2. XDS: Kabsch, W. (2010a). XDS. Acta Cryst. D66, 125-132.
3. Felix: K. R. Beyerlein, T. A. White, O. Yefanov, C. Gati, I. G. Kazantsev, N. F.-G.

Nielsen, P. M. Larsen, H. N. Chapman and S. Schmidt: “FELIX: an algorithm for

indexing multiple crystallites in X-ray free-electron laser snapshot diffraction

images”. J. Appl. Cryst. (2017). 50, 1075-1083.

https://doi.org/10.1107/S1600576717007506
4. CCP4: M. D. Winn et al. Acta. Cryst. D67 , 235-242 (2011): "Overview of the

CCP4 suite and current developments". doi:10.1107/S0907444910045749]
5. MOSFLM: T.G.G. Battye, L. Kontogiannis, O. Johnson, H.R. Powell and A.G.W.

Leslie (2011), Acta Cryst. D67, 271-281.
6. DirAx: Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96

15

Ptycho Shelves
Data Analysis Use Case Example

Lead: Paul Scherrer Institut

Introduction 2

Description 2

Requirements 2
Software, Licenses, Hardware 2
I/O (volumes, rates, formats) 2
Application Programming Interfaces (if any) 2
anything else 3

Reference Data 3
Sample Data 3
Sample scripts/procedure/notebook/recipes 3

Benchmarks 3
Platform(s) 3
Results 3

Deployment 4
Packages/Container/notebook ... 4

User Support 4

Future Developments, Roadmap 4

16

Introduction

Ptychography is a technique that combines scanning and coherent diffractive

lensless imaging. In its more conventional configuration a sample is scanned

through a beam and for each scanning point a diffraction pattern is measured,

making sure to have some degree of overlap between neighboring scanning

positions. The diffraction patterns are then fed to a iterative reconstruction

algorithm to reconstruct the complex-valued incident wavefield and complex-valued

sample transmissivity. In doing this one does away with image forming optics and

can obtain imaging resolution not bounded by their quality and aberrations.

Ptycho Shelves is an innovative and conceptually-simple modular framework for

ptychography reconstructions. With the constant development of algorithms for

ptychography there is currently a plethora of different options for reconstruction

algorithms, or engines. Furthermore, different engines offer different features for

correction of experimental imperfections. Hence it becomes important to be able to

stack together different modules such that different engines can be executed in

series, with the output of one algorithm being the initial guess of the following.

Along with the package come several of currently used ptychography algorithms

and the framework allows for further expansion.

At some experimental stations there are multiple X-ray detectors available, or

different options for computing sample positions based on several interferometric

readings. Ptycho shelves also offers flexible modules for switching between different

detectors, data preparation functions, or computations of sample positions.

Description

Ptycho-shelves is organized in MATLAB packages, which are used to organize the

modules, e.g. core, engine, detector, etc. The different engines include: prototype

17

MATLAB scripts, some of them include MEX functions for speed; and the cSAXS high-

performance C++ CPU code which is used in production at the cSAXS beamline. It

allows preprocessing of data and ptychographic reconstruction with various engines.

Documentation will be provided as a general description of the different included

engines, a step-by-step use guide with simulated data and a sample dataset.

Requirements

Basic prototype engines require Matlab 2018a, GPU enhanced codes require CUDA

and Matlab parallel toolbox. The C++ CPU engine can be compiled and run

independently with standard libraries.

Prerequisites for Ptycho Shelves framework:

● Matlab >= 2018a

Prerequisites for C++ engine:

● GCC >= 6.2.0
● Hdf5_serial >= 1.8.18
● Intel MKL >= 17.1
● openMPI >= 2.0.1

Prerequisites for GPU engine:

● CUDA >= 8.0
● Matlab parallel toolbox

Prerequisites for data cSAXS preparation:

● Hdf5_serial >= 1.8.18
● Python2.7 >= 2.3.0

 Matlab functions need the cSAXS Matlab base package

https://www.psi.ch/sls/csaxs/software.

 Software, Licenses, Hardware

18

https://www.psi.ch/sls/csaxs/software

The software license can be found in

https://www.psi.ch/sls/csaxs/ComputingEN/License.txt

Hardware requirements

There Ptycho Shelves framework has no special hardware requirements. The C++

CPU engine was optimized for Intel Xeon processors and we strongly recommend to

use modern processors with SIMD instructions AVX-512. The memory requirements

will depend on size of the processed dataset but also on the used reconstruction

method and number of reconstructions modes, i.e. coherence modes in illumination

or number of separated object reconstructions. We strongly recommend to have at

least 16GB RAM available.

The GPGPUs accelerated engines require at Nvidia cards with at least computational

compatibility 2.0 and more than 8GB of internal GPU memory.

I/O (volumes, rates, formats)

The format for the raw input data for the Ptycho Shelves framework is

defined for several application cases, i.e. different detectors and

positioning systems, at cSAXS but ultimately can be adapted by the end

user to new formats. The loaded raw data are stored to HDF5 with

customized that can be used as inputs to the C++ CPU engine. The outputs

are stored into a HDF5 format as well. Details of the input and output

HDF5 structures will be provided in the final documentation.

Application Programming Interfaces (if any)

19

https://www.psi.ch/sls/csaxs/ComputingEN/License.txt

The C++ engine can called separately via a command line API. This allows remote

batch processing and automatization. The Ptycho Shelves package does not contain

any API and it is controlled by configuration scripts written in Matlab.

Reference Data

Sample Data

Ptychography simulated and experimental data will be provided in the environment.

Sample scripts/procedure/notebook/recipes

Ptycho Shelves toolkit is fully configurable via simple Matlab-based configuration

scripts. We will provide a well commented example of such configuration script that

can be simply adjusted by users for their specific needs.

Benchmarks

There is no need for benchmarks of the Ptycho Shelves framework, because it only

provides a shared and robust environment for calling multiple ptychographic

engines that will perform the computationally demanding ptychography

reconstruction.

Performance of the engines will be benchmarked for several common application

cases.

 Platform(s)

Ptycho Shelves package is based on the Matlab environment, which makes it

platform independent as long as Matlab with the required toolboxes is available.

The implemented matlab engines may need to be recompiled for the specific

20

platform. The high performance C++ CPU and GPGPU accelerated engines are

supported only for recent Linux distributions.

Deployment

The source codes of the ptychographic engines will be provided along with a

tutorial, where the necessary compilation steps will be described. Loading of the raw

measurements needs to be adjusted for the specific experimental environment,

however we will provide a way to generate artificial datasets that are important for

initial tests.

User Support

Clear and detailed documentation will be provided so that the examples can be run

in the to-be-defined environment. The documentation should provide sufficient

details to allow users run their own reconstructions of the provided example

datasets.

Future Developments, Roadmap

As new algorithms that should provide accelerated convergence or other

ptychographic modalities such as extended depth of focus are developed by our

group they will be deployed as new engines in this framework. They can be

incorporated into the CALIPSO environment as they become available.

21

Name of Software/Package: Savu
Data Analysis Use Case Example: Tomography

Lead: Diamond Light Source

Introduction 2

Description 2

Requirements 2
Software, Licenses, Hardware 2
I/O (volumes, rates, formats) 2
Application Programming Interfaces (if any) 2
anything else 3

Reference Data 3
Sample Data 3
Sample scripts/procedure/notebook/recipes 3

Benchmarks 3
Platform(s) 3
Results 3

Deployment 4
Packages/Container/notebook ... 4

User Support 4

Future Developments, Roadmap 4

22

Introduction

Savu is a Python package to assist with the processing and reconstruction of

parallel-beam tomography data. The project originated in the Data Analysis Group

at the Diamond Light Source (UK synchrotron) to address the growing, and

increasingly complex, needs of the tomography community.

Designed to allow greater flexibility in tomography data processing, Savu is capable

of processing N-dimensional full-field tomography and mapping tomography data,

along with concurrent processing of multiple datasets such as those collected as

part of a multi-modal setup. Savu is currently in use across the tomography

beamlines at Diamond to reconstruct both full-field tomography data and multi-

modal, mapping tomography data.

Description

Savu is an object-oriented Python framework, with a modular plugin architecture.

The framework handles the movement of the data, in serial or parallel on a local PC

or cluster, and each plugin performs a specific independent task, such as

correction, filtering, reconstruction. Savu process lists, tailored to a specific

experiment and passed to the framework at runtime along with the data, detail the

processing steps that are required. The process list is created using the Savu

configurator tool, which stacks together plugins chosen from a repository.

Features

● Full-field and mapping tomography data processing
● Time resolved imaging
● multi-modal data processing
● Absorption, fluorescence, diffraction and ptychography data processing
● Handles N-dimensional data and multiple datasets
● Supports multiple data formats
● Runs in serial or parallel on your local machine
● Runs in parallel across a cluster
● Supports very large data processing with parallel HDF5 (not limited by RAM)

23

● Allows flexible data slicing (e.g. alternate between projection and sinogram

processing)
● Plugin architecture with CPU and GPU plugins
● Processing tailored to a specific experimental setup
● Easy integration of new functionality

Savu is an open-source project, freely available on Github:

https://github.com/DiamondLightSource/Savu

Requirements

 Software, Licenses, Hardware

Software: Most packages required by Savu are installed in the conda environment,

packaged with Savu, during the installation process. Some of the these packages

(hdf5, h5py and mpi4py), will be built against MPI libraries, via conda recipes during

the installation process. The only other software requirement for the Savu

framework is:

● MPI : Tested and working with OpenMPI >= 1.8.5

Other packages required for a full range of plugins are:

● CUDA : Tested and working with 7.0
● FFTW3

License: Savu is dual licensed under the Apache V2 and GPL V3 license (GPL V3

license is due to the use of The ASTRA Toolbox (https://www.astra-toolbox.com/) in

two plugins, which are optional).

Hardware: GPUs are required for a full range of plugins, but are not mandatory.

Savu is heavily I/O dependent and so for large data, cluster based processing,

performance is significantly improved with infiniband network connection and has

been shown to work well with GPFS and Lustre file systems.

24

 I/O (volumes, rates, formats)

Savu uses parallel HDF5 to read and write data directly from file at every processing

step (plugin). Since there is no RAM limitation, the size of data that can be

processed depends on the hard drive storage available. Typical datasets range from

a few GB to a few TB. The size of the data is typically increased on processing, and

each intermediate processing step will create at least one HDF5 output file. These

intermediate files can be stored in a temporary location. The final output is typically

HDF5, but it is possible to have a range of input and output formats.

The I/O rates are high, but they will depend on the size of the data, the number of

cores and the chosen processing steps.

 Application Programming Interfaces (if any)

None.

 anything else

Nothing to add.

Reference Data

Sample Data

Small test data and example process lists, for both full-field and mapping

tomography, are packaged with Savu. A typical, full-sized, full-field tomography

data set is available on zenoda https://doi.org/10.5281/zenodo.1181825.

Sample scripts/procedure/notebook/recipes

25

https://doi.org/10.5281/zenodo.1181825

All currently available documentation for Savu can be found on readthedocs:

https://savu.readthedocs.io/en/latest/

Platform(s)

● Any Linux distribution.

Benchmarks

Results

Savu is a very flexible framework and provides a vast array of processing options for

a number of different measurements, with processing tailored to a specific

experimental setup. The problem is data parallel, and Savu optimises the load

balancing based on the number of frames to process for each plugin and the

number of MPI processes available.

Benchmarks are provided for a typical full-field tomography dataset (see Sample

data above): For the auto-processing we perform on a subset of the data at

Diamond and both a simple and complex processing pipeline applied to the full

data.

The tests ran on one of our cluster hosts, where each node has 20 cores and 4 GPUs

(although the GPUs were not used in these tests). Data is read from and written to

a GPFS file system via infiniband network.

Preview Savu processing :

● Auto-processing : Approx 60 seconds on 1 node (This takes 9 seconds if

you know the centre value, or somewhere in between if you have an idea of it

and reduce the search region).
1. Dark and flat field correction

26

2. Auto-centering
3. Tomopy Gridrec reconstruction

Full Savu processing :

● Simple processing : Approx 40 seconds on 9 nodes (180 cores)
1. Dark and flat field correction
2. Tomopy Gridrec reconstruction.

● Complex processing : Approx 106 seconds on 9 nodes
1. Zinger Removal (high frequency scatter spots)
2. Dark and flat field correction
3. Distortion correction (using pre-calculated coefficients)
4. Contrast enhancement
5. Ring artefact removal
6. Tomopy gridrec reconstruction.

Deployment

Savu is available to download and install from Github:

https://savu.readthedocs.io/en/latest/dls_installer/

This requires a tar.gz file to be downloaded that contains a bash script and details of

packages and conda recipes required for the installation process. On executing the

bash script, Miniconda is downloaded and installed, with all subsequent software

packages installed (and built in some cases) into the conda environment. The

installation process finishes with a range of tests, which make use of the test data

and process lists that are packaged with Savu. To use Savu on a cluster, it may be

necessary to update the launcher scripts to be compatible with the chosen

scheduler and available resources.

User Support

Simple user documentation is available on readthedocs.

Future Developments, Roadmap

Continued development of experimental plugins, and performance optimisation.

27

https://savu.readthedocs.io/en/latest/dls_installer/

References

The primary reference for the Savu framework is currently the archive paper:

Wadeson, N., & Basham, M. (2016). Savu: A Python-based, MPI Framework for
Simultaneous Processing of Multiple, N-dimensional, Large Tomography Datasets.
arXiv preprint arXiv:1610.08015.

All references for a particular Savu processing pipeline are available in the output

nexus file. Savu comes with a tool to run against the nexus file to convert the

entries into BibTex and EndNote formats

28

pyFAI
Data Analysis Use Case Example

Lead: ESRF

Introduction 2

Description 2

Requirements 2
Software, Licenses, Hardware 2
I/O (volumes, rates, formats) 2
Application Programming Interfaces (if any) 2
anything else 3

Reference Data 3
Sample Data 3
Sample scripts/procedure/notebook/recipes 3

Benchmarks 3
Platform(s) 3
Results 3

Deployment 4
Packages/Container/notebook ... 4

User Support 4

Future Developments, Roadmap 4

Introduction

2D area detectors like CCD or pixel detectors have become popular in the last 20

years for diffraction experiments (e.g. for WAXS, SAXS, single crystal and powder

diffraction). These detectors have a large sensitive area of millions of pixels with

29

high spatial resolution. The software package pyFAI has been designed to reduce

SAXS, WAXS and XRPD images taken with those detectors into 1D curves (azimuthal

integration) usable by other software for in-depth analysis such as Rietveld

refinement, or 2D images (a radial transformation named caking in FIT2D). As a

library, the aim of pyFAI is to be integrated into other tools with a clean pythonic

interface or being used directly with the Jupyter interface. However pyFAI features

also command line and graphical tools for batch processing, converting data into q-

space (q being the momentum transfer) or 2θ-space (θ being the Bragg angle) and

a calibration graphical interface for optimizing the geometry of the experiment

using the Debye-Scherrer rings of a reference sample.

Description

PyFAI is the Python library for Fast Azimuthal Integration. The complete

documentation is available online at:

● http://www.silx.org/doc/pyFAI/dev/
● http://pyfai.readthedocs.io/en/latest/

Requirements

The pyFAI is pip-installable with all dependencies available from http://pypi.org

 Software, Licenses, Hardware

● Git repository: https://github.com/silx-kit/pyFAI
● SW (OSS) Licenses: MIT license
● Special HW requirements: GPU accelerated via OpenCL (optional)

 I/O (volumes, rates, formats)

The pyFAI librarie itself does not handle I/O and relies on:

● h5py for reading HDF5 files
● FabIO for reading all other file-formats
● Numpy array saved on the disk are also possible

30

https://github.com/silx-kit/pyFAI
http://pypi.org/
http://pyfai.readthedocs.io/en/latest/
http://www.silx.org/doc/pyFAI/dev/

 Application Programming Interfaces (if any)

While the API is described in: http://www.silx.org/doc/pyFAI/dev/api/modules.html,

the basic usage is described in a couple of cookbooks like:

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/integration_with_python.html

Anything else

Advanced tutorials using the jupyter notebook are available at :

http://www.silx.org/doc/pyFAI/dev/usage/tutorial/index.html

see the project source for jupyter notebooks (ipynb) files

Reference Data

Most tutorials in https://github.com/silx-

kit/pyFAI/tree/master/doc/source/usage/tutorial are self-contained and will download

the needed data from internet as needed. The proxy setting may be adjusted for

this.

 Sample Data

Sample data are provided as part of the tutorials.

 Sample scripts/procedure/notebook/recipes

Every tutorial is provided as a web-page and as a self-contained jupyter notebooks.

Benchmarks

31

https://github.com/silx-kit/pyFAI/tree/master/doc/source/usage/tutorial
https://github.com/silx-kit/pyFAI/tree/master/doc/source/usage/tutorial
http://www.silx.org/doc/pyFAI/dev/usage/tutorial/index.html
http://www.silx.org/doc/pyFAI/dev/usage/cookbook/integration_with_python.html
http://www.silx.org/doc/pyFAI/dev/api/modules.html

Python being an interpreted programming language it is slower than most compiled

languages. This is why pyFAI heavily relies on compiled extensions (using OpenMP)

and off-load the most time-critical calculation on GPU using OpenCL (if possible) to

provide state of the art performances with the convenience of an interpreted

language.

Benchmarks are available within the documentation at

http://www.silx.org/doc/pyFAI/dev/pyFAI.html#performances-and-migration-to-

native-code

 Platform(s)

PyFAI runs where the Python scientific stack (SciPy) is available:

● Windows
● Linux
● MacOS

32

http://www.silx.org/doc/pyFAI/dev/pyFAI.html#performances-and-migration-to-native-code
http://www.silx.org/doc/pyFAI/dev/pyFAI.html#performances-and-migration-to-native-code

While the continuous integration is validating only on amd64 hardware, the library is

known to be running running on Intel i386, ARMv7 and ARMv8, MIPS32 and

PowerPC64.

 Results

Thanks to its speed, pyFAI has been used in some of the largest experiments

involving X-Ray diffraction like: https://www.nature.com/articles/nature16060

Deployment

The software is available as source and pip-installable (pip install pyFAI) on any

architecture. Binary wheels are provided for most common architectures. Other will

require the presence of a C-compiler.

 Packages/Container/notebook ...

● Debian packages (https://packages.debian.org/sid/pyfai)
● Conda packages (https://anaconda.org/conda-forge/pyfai)
● Red-hat 7 packages (http://pubrepo.maxiv.lu.se/rpm/el7/x86_64/)
● PIP: https://pypi.org/project/pyFAI

User Support

A mailing list, pyfai@esrf.fr, is publicly available. This is the best place to ask

questions: the authors and many advanced users are there. To subscribe to this

mailing list, send an email to pyfai-subscribe@esrf.fr.

The volume of email on the list remains low, and is archived at: http://www.edna-

site.org/lurker. There are information about release of the software, new features

available and meeting announcements. The archive also provides a knowledge-

base of most frequently asked question before it gets integrated into the

documentation.

If you think you are facing a bug, the best is to create a new issue on the GitHub

page (you will need a GitHub account for that).

33

https://github.com/silx-kit/pyFAI/issues
https://github.com/silx-kit/pyFAI/issues
http://www.edna-site.org/lurker
http://www.edna-site.org/lurker
mailto:pyfai-subscribe@esrf.fr
https://pypi.org/project/pyFAI
http://pubrepo.maxiv.lu.se/rpm/el7/x86_64/
https://anaconda.org/conda-forge/pyfai
https://packages.debian.org/sid/pyfai
https://www.nature.com/articles/nature16060

Direct contact with authors is discouraged: pyFAI is open source software that we

develop to aid the research community in doing what they do best. While we do

enjoy doing this, we would not be able to dream of spending nearly as much time

with pyFAI as we do if it wasn’t for your support. Interest of the scientific community

(via a lively mailing list) and citation in scientific publication for our software is one

of the main criterion for ESRF management when deciding if they should continue

funding development.

Future Developments, Roadmap

PyFAI is currently in version 0.16 (development branch) which mean some

important features are still missing according to the authors. Nevertheless there are

many unique features already available (and production ready) like:

● Any detector geometry: most X-ray detectors are already tabulated in pyFAI
● Anywhere in space: pyFAI is not limited to orthogonal nor centered detector

setup
● Detector mounted on goniometers with hundreds of images from various

positions

The version 1.0 may be:

● Equally usable from CLI, GUI or notebooks
● Provide proper error propagation
● Offer (user-defined) geometry refinement

But the roadmap of pyFAI may not be the one of ESRF beamlines… this is why pyFAI

is an open-source project accepting pull-requests for your specific needs (if it is of

general interest).

34

http://dx.doi.org/10.1107/S1600576715004306

PyMca
Data Analysis Use Case Example
Lead: ESRF

Introduction 2

Description 2

Requirements 3
Software, Licenses, Hardware 3
I/O (volumes, rates, formats) 3
Application Programming Interfaces (if any) 3

Reference Data 3
Sample Data 3
Sample scripts/procedure/notebook/recipes 4

Benchmarks 4
Platform(s) 4
Results 4

Deployment 5
Packages/Container/notebook ... 5

User Support 5

Future Developments, Roadmap 5

35

Introduction

X-ray microscopy is a common technique at synchrotron facilities that can be

performed in different modes (scanning or full field) using a large variety of

techniques (X-ray fluorescence, X-ray Absorption Spectroscopy, X-Ray Diffraction…)

often combining more than one technique simultaneously. There is a clear need to

have applications able to explore X-ray microscopy datasets. PyMca is one of them.

The programs aXis2000 and MAPS are notable alternatives based on a commercial

language (IDL). A port of MAPS to Python is going on.

PyMca was initially developed to fulfill user needs related to X-ray Fluorescence

Analysis (XRF) and it can be a considered a reference in that field like AXIL, GeoPIXE

or GUPIX. It offers all what users can expect in that field (qualitative and

quantitative analysis, interactive and batch processing, large variety of data formats

support -including HDF5 NeXus-) while being the only free and open source

alternative among the reference applications.

Besides those specific applications, its visualization and data exploring capabilities

make of PyMca a Swiss Army knife for the synchrotron user

Description

Set of Python modules and applications for interactive and batch processing of X-ray

Fluorescence and X-ray microscopy data.

Some of the capabilities of the program have been published in peer reviewed

journals:

- Solé et al. A multiplatform code for the analysis of energy-dispersive X-ray

fluorescence spectra. Spectrochimica Acta Part B 62 (2007) 63–68. DOI:

10.1016.j,sab.2006.12.002

36

- Cotte et al. Watching Kinetic Studies as Chemical Maps Using Open-Source

Software. Analytical Chemistry 88 (2016) 6154–6160. DOI:

10.1021/acs.analchem.5b04819
- Nikbakht et al. An efficient approach to integrated MeV ion imaging.

Ultramicroscopy 186 (2018) 112–119. DOI: 10.1016/j.ultramic.2017.12.014

Additional documentation is available at http://www.silx.org/doc/PyMca/dev/

Requirements

PyMca is pip-installable with all dependencies available from http://pypi.org

 Software, Licenses, Hardware

● Git repository: https://github.com/vasole/pymca
● SW (OSS) Licenses: MIT license
● Special Hardware requirements: None
● Special Software requirements: C++ compiler to build the package from

source

 I/O (volumes, rates, formats)

Most common data formats supported. HDF5 and NeXus supported since 2010.

 Application Programming Interfaces (if any)

Most of the modules building PyMca can be executed as stand-alone scripts

illustrating the usage of that particular module. More specific aspects of the code

are available at the documentation pages.

Reference Data

The code is shipped with data to perform basic tutorials and tests.

37

https://github.com/vasole/pymca
http://pypi.org/

 Sample Data

The code is shipped with data to perform basic tutorials and tests.

 Sample scripts/procedure/notebook/recipes

Additional documentation is available at http://www.silx.org/doc/PyMca/dev/

Benchmarks

Lorem ipsum dolor sit amet

 Platform(s)

PyMca runs wherever the Python package numpy is available. The use of the

graphical interface requires one of PyQt5, PyQt4 or PySide installed. Therefore

complete functionality is available in platforms where Qt can be installed:

● Windows
● Linux
● MacOS

While the continuous integration is validating only on amd64 hardware, PyMca is

known to be running on Intel i386, ARMv7 and ARMv8, MIPS32 and PowerPC64.

 Results

There are many examples of application of PyMca. The first article describing PyMca

has been cited more than 800 times.

Deployment

38

http://www.silx.org/doc/PyMca/dev/

The software is available as source and pip-installable (pip install pymca) on any

architecture. Binary wheels are provided for MacOS and windows. Others will require

the presence of a C++ compiler.

 Packages/Container/notebook …

Besides availability from PyPI, PyMca is available as official package for most

common linux distribution (Debian, Ubuntu, Fedora, …)

Ready to use binaries, not requiring any particular installation are provided for

windows and MacOS too https://sourceforge.net/projects/pymca/files/pymca/

User Support

A mailing list, pymca-users@sourceforge.net, is publicly available. There are

information about release of the software, new features available and meeting

announcements. The archive also provides a knowledge-base of most frequently

asked questions prior to integration into the documentation.

Bugs should be reported either at the mailing list or creating new issue at the

GitHub page https://github.com/vasole/pymca/issues.

Future Developments, Roadmap

With its version published in 2004, PyMca is a mature piece of software. Current

efforts are mainly focused on improving the documentation by providing complete

on-line tutorials.

39

https://github.com/vasole/pymca/issuesIf
mailto:pymca-users@sourceforge.net

40

	Premise
	Description of Work
	1. Introduction
	2. Data analysis application USE CASE SURVEY amongst CALIPSOplus members
	Next steps

	Conclusion
	
	Introduction
	Description
	Requirements
	Licenses
	References for the indexing packages:
	Hardware requirements:
	I/O (volumes, rates, formats)
	Application Programming Interfaces (if any)
	Anything else

	Reference Data
	Sample Data
	Sample scripts/procedure/notebook/recipes

	
	Platform(s)
	Benchmarks
	Results

	Deployment
	Concept of deploying CrystFEL on elastic cloud resources
	Providing CrystFEL as a service using Jupyter Notebooks

	User Support
	Future Developments, Roadmap
	References
	
	Introduction
	Description
	Requirements
	Software, Licenses, Hardware
	I/O (volumes, rates, formats)
	The format for the raw input data for the Ptycho Shelves framework is defined for several application cases, i.e. different detectors and positioning systems, at cSAXS but ultimately can be adapted by the end user to new formats. The loaded raw data are stored to HDF5 with customized that can be used as inputs to the C++ CPU engine. The outputs are stored into a HDF5 format as well. Details of the input and output HDF5 structures will be provided in the final documentation.
	Application Programming Interfaces (if any)
	Reference Data
	Sample Data
	Sample scripts/procedure/notebook/recipes

	Benchmarks
	Platform(s)

	Deployment
	User Support
	Future Developments, Roadmap
	
	Introduction
	Description
	Requirements
	Software, Licenses, Hardware
	I/O (volumes, rates, formats)
	Application Programming Interfaces (if any)
	anything else

	Reference Data
	Sample Data
	Sample scripts/procedure/notebook/recipes

	Platform(s)
	Benchmarks
	Results

	Deployment
	User Support
	Future Developments, Roadmap
	References
	Introduction
	Description
	Requirements
	Software, Licenses, Hardware
	I/O (volumes, rates, formats)
	Application Programming Interfaces (if any)
	Anything else

	Reference Data
	Sample Data
	Sample scripts/procedure/notebook/recipes

	Benchmarks
	Platform(s)
	Results

	Deployment
	Packages/Container/notebook ...

	User Support
	Future Developments, Roadmap
	Introduction
	Description
	Requirements
	Software, Licenses, Hardware
	I/O (volumes, rates, formats)
	Application Programming Interfaces (if any)

	Reference Data
	Sample Data
	Sample scripts/procedure/notebook/recipes

	Benchmarks
	Platform(s)
	Results

	Deployment
	Packages/Container/notebook …

	User Support
	Future Developments, Roadmap

